The spectral geometry of operators of Dirac and Laplace type

نویسنده

  • P. Gilkey
چکیده

Contents 1 Introduction 2 The geometry of operators of Laplace and Dirac type 3 Heat trace asymptotics for closed manifolds 4 Hearing the shape of a drum 5 Heat trace asymptotics of manifolds with boundary 6 Heat trace asymptotics and index theory 7 Heat content asymptotics 8 Heat content with source terms 9 Time dependent phenomena 10 Spectral boundary conditions 11 Operators which are not of Laplace type 12 The spectral geometry of Riemannian submersions

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inverse Problem for Interior Spectral Data of the Dirac Operator with Discontinuous Conditions

In this paper, we study the inverse problem for Dirac differential operators with  discontinuity conditions in a compact interval. It is shown that the potential functions can be uniquely determined by the value of the potential on some interval and parts of two sets of eigenvalues. Also, it is shown that the potential function can be uniquely determined by a part of a set of values of eigenfun...

متن کامل

Heat Content Asymptotics for Operators of Laplace Type with Spectral Boundary Conditions

Let P be an operator of Dirac type and let D = P 2 be the associated operator of Laplace type. We impose spectral boundary conditions and study the leading heat content coefficients for D.

متن کامل

Spectral Boundary Conditions for Generalizations of Laplace and Dirac Operators

Spectral boundary conditions for Laplace-type operators on a compact manifold X with boundary are partly Dirichlet, partly (oblique) Neumann conditions, where the partitioning is provided by a pseudodifferential projection; they have an interest in string and brane theory. Relying on pseudodifferential methods, we give sufficient conditions for the existence of the associated resolvent and heat...

متن کامل

The Higher Spin Dirac Operators on 3-Dimensional Manifolds

We study the higher spin Dirac operators on 3-dimensional manifolds and show that there exist two Laplace type operators for each associated bundle. Furthermore, we give lower bound estimations for the first eigenvalues of these Laplace type operators.

متن کامل

A Dirac Operator for Extrinsic Shape Analysis

The eigenfunctions and eigenvalues of the Laplace-Beltrami operator have proven to be a powerful tool for digital geometry processing, providing a description of geometry that is essentially independent of coordinates or the choice of discretization. However, since Laplace-Beltrami is purely intrinsic it struggles to capture important phenomena such as extrinsic bending, sharp edges, and fine s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007